Self‐Recoverable Symmetric Protonic Ceramic Fuel Cell with Smart Reversible Exsolution/Dissolution Electrode

Author:

Wang Yuhao1ORCID,Wang Zheng2,Yang Kaichuang34,Liu Jiapeng15,Song Yufei1,Li Jingwei67,Hu Zhiwei8,Robson Matthew J.1,Zhang Zhiqi9,Tian Yunfeng110,Xu Shenjun67,Lu Ying4,Law Ho Mei67,Liu Feng11,Chen Qing1,Yang Zhibin312,Ciucci Francesco167ORCID

Affiliation:

1. Department of Mechanical and Aerospace Engineering The Hong Kong University of Science and Technology Clear Water Bay Hong Kong 999077 P. R. China

2. Institute for Advanced Study Shenzhen University Shenzhen 518060 P. R. China

3. Research Center of Solid Oxide Fuel Cell China University of Mining and Technology‐Beijing Beijing 100083 P. R. China

4. School of Engineering Westlake University Hangzhou 310024 P. R. China

5. School of Advanced Energy Sun Yat‐Sen University Shenzhen 518107 P. R. China

6. Chair of Electrode Design for Electrochemical Energy Systems University of Bayreuth Weiherstrasse 26 95448 Bayreuth Bavaria Germany

7. Bavarian Center for Battery Technology (BayBatt) University of Bayreuth Universitätsstraße 30 95447 Bayreuth Germany

8. Max‐Planck‐Institute for Chemical Physics of Solids Nöthnitzer Str. 40 01187 Dresden Germany

9. Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education School of Energy and Environment Southeast University Nanjing 210096 P. R. China

10. Jiangsu Key Laboratory of Coal‐based Greenhouse Gas Control and Utilization School of Materials Science and Physics China University of Mining and Technology Xuzhou 221116 P. R. China

11. Yunnan Precious Metals Lab Co., LTD Kunming 650100 P. R. China

12. Beijing Huairou Laboratory Beijing 101400 China

Abstract

AbstractThis study unveils a novel concept of symmetric protonic ceramic fuel cells (symm‐PCFCs) with the introduction of a self‐recoverable electrode design, employing the innovative material BaCo0.4Fe0.4Zr0.1Y0.1O3‐δ (BCFZY). This research marks a significant milestone as it demonstrates the bi‐functional electrocatalytic activity of BCFZY for the first time. Utilizing density functional theory simulations, the molecular orbital interactions and defect chemistry of BCFZY are explored, uncovering its unique capability for the reversible exsolution and dissolution of Co‐Fe nanoparticles under redox conditions. This feature is pivotal in promoting both hydrogen oxidation and oxygen reduction reactions. Leveraging this insight, a cell is fabricated exhibiting high electrocatalytic activity and fuel flexibility as evidenced by the peak power densities of ≈350, 287, and 221 mW cm−2 (at 600 °C) with hydrogen, methanol, and methane as fuels, respectively. Experiments also show that the reversible exsolution/dissolution mitigates performance degradation, enabling prolonged operational life through self‐recovery. This approach paves the way for novel, advanced, durable, and commercially viable symm‐PCFCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3