An Integrated Asymmetric Wet Adhesive Hydrogel with Gradient Charge Distribution Induced by Electrostatic Field

Author:

Xu Zhicheng1,Liang Xuejiao12,Ma Wencan1,An Xiaoming1,Wu Haomin1,Zhang Qiuhong1ORCID,Jia Xudong13

Affiliation:

1. Key Laboratory of High Performance Polymer Material and Technology of MOE Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China

2. State Key Laboratory of Pharmaceutical Biotechnology School of Life Sciences Nanjing University Nanjing 210023 P. R. China

3. State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210023 P. R. China

Abstract

AbstractAdhesive hydrogels have been applied in biomedical field as an alternative to surgical sutures. However, there still exist rigorous challenges in rough underwater adhesion and asymmetric adhesion of hydrogels, especially applied in wound healing and organ repair in vivo. Herein, a strategy is proposed to prepare integrated hydrogels with asymmetric underwater adhesion capability by forming the asymmetric electrical interface under an electrostatic field. The synergistic effects between catechol and amine and complex coacervation are used to improve the underwater adhesion of hydrogel. Furthermore, by applying an electrostatic field, the cations and anions in solution of monomers are separated to form asymmetric adhesion interfaces. The hydrogel exhibits obvious asymmetric underwater adhesion ability on porcine skin with a strong adhesive strength of 97 kPa on cation side and 25 kPa on the anion side. Animal experiment outcomes reveal that only one side of the asymmetric hydrogel could adhere firmly to the rat liver and the rabbit stomach, while the other side could not effectively prevent postoperative tissue adhesion. The asymmetric distribution of adhesive molecules induced by electrostatic fields will provide a new alternative for designing and adjusting asymmetric adhesives after surgery.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

National Institutes of Health

Nanjing University

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3