Affiliation:
1. Institute of Industry & Equipment Technology Anhui Province Key Lab of Aerospace Structural Parts Forming Technology and Equipment Hefei University of Technology Hefei 230009 P. R. China
2. National Key Laboratory of Science and Technology on Advanced Composites in Special Environments Center for Composite Materials and Structures Harbin Institute of Technology Harbin 150080 P. R. China
Abstract
AbstractPhototropism and self‐oscillation are both self‐regulating intelligent movements of biological organisms. However, realizing these intelligent movements in one same artificial actuation system remains a great challenge. Here, by introducing dynamic light‐mechanical interaction, a MXene‐based actuator is designed and fabricated that can generate unique self‐adaptive light‐driven actuation from the equilibrium state of phototropic deformation to self‐oscillation. The actuator can autonomously track the incident light, showing a sunflower‐like phototropism. Moreover, by simply installing a load on the actuator to induce self‐shadowing‐enabled negative feedback loop, it can carry the load to continuously oscillate under constant light irradiation, with a frequency of 6.5 Hz, an amplitude of 2.6 mm, and a load‐to‐weight ratio value of 4.7. The oscillation frequency and amplitude can be further adjusted by the incident light power, actuator length, and weight of the installed load. This oscillator can serve as an intelligent light‐powered motor platform. By installing diverse accessories with different functions on the oscillator, it can realize various applications, including information transmission, light‐induced power generation, bionic motions, and multi‐mode intelligent switches. These results provide a simple and versatile strategy for designing a self‐adaptive oscillator driven by light and show the prospect of the oscillator in light‐powered engines and smart machinery systems.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Anhui Province
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献