CO2 Conversion Toward Real‐World Applications: Electrocatalysis versus CO2 Batteries

Author:

Xu Changfan1,Dong Yulian1,Zhao Huaping1,Lei Yong1ORCID

Affiliation:

1. Institut für Physik & IMN MacroNano Fachgebiet Angewandte Nanophysik Technische Universität Ilmenau 98693 Ilmenau Germany

Abstract

AbstractElectrochemical carbon dioxide (CO2) conversion technologies have become new favorites for addressing environmental and energy issues, especially with direct electrocatalytic reduction of CO2 (ECO2RR) and alkali metal‐CO2 (M–CO2) batteries as representatives. They are poised to create new economic drivers while also paving the way for a cleaner and more sustainable future for humanity. Although still far from practical application, ECO2RR has been intensively investigated over the last few years, with some achievements. In stark contrast, M–CO2 batteries, especially aqueous and hybrid M–CO2 batteries, offer the potential to combine energy storage and ECO2RR into an integrated system, but their research is still in the early stages. This article gives an insightful review, comparison, and analysis of recent advances in ECO2RR and M–CO2 batteries, illustrating their similarities and differences, aiming to advance their development and innovation. Considering the crucial role of well‐designed functional materials in facilitating ECO2RR and M–CO2 batteries, special attention is paid to the development of rational design strategies for functional materials and components, such as electrodes/catalysts, electrolytes, and membranes/separators, at the industrial level and their impact on CO2 conversion. Moreover, future perspectives and research suggestions for ECO2RR and M–CO2 batteries are presented to facilitate practical applications.

Funder

Deutsche Forschungsgemeinschaft

China Scholarship Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3