Manipulating Oxygen Vacancies to Spur Ion Kinetics in V2O5 Structures for Superior Aqueous Zinc‐Ion Batteries

Author:

Ye Jia‐Jia1,Li Pei‐Hua2,Zhang Hao‐Ran1,Song Zong‐Yin2,Fan Tianju1,Zhang Wanqun1,Tian Jie1,Huang Tao1,Qian Yitai1,Hou Zhiguo1,Shpigel Netanel3,Chen Li‐Feng1ORCID,Dou Shi Xue45

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale CAS Key Laboratory of Mechanical Behavior and Design of Materials (LMBD) School of Engineering Science School of Chemistry and Materials Science University of Science and Technology of China Hefei Anhui 230026 P. R. China

2. Key Laboratory of Environmental Optics and Technology and Environmental Materials and Pollution Control Laboratory Institute of Solid State Physics HFIPS Chinese Academy of Sciences Hefei 230031 P. R. China

3. Department of Chemistry Bar‐Ilan University Ramat‐Gan 5290002 Israel

4. Institute for Superconducting and Electronic Materials University of Wollongong NSW 2522 Australia

5. Institute of Energy Materials Science (IEMS) University of Shanghai for Science and Technology Shanghai 200093 P. R. China

Abstract

AbstractVanadium‐based intercalation materials have attracted considerable attention for aqueous zinc‐ion batteries (ZIBs). However, the sluggish interlaminar diffusion of zinc ions due to the strong electrostatic interaction, severely restricts their practical application. Herein, oxygen vacancy‐enriched V2O5 structures (Zn0.125V2O5·0.95H2O nanoflowers, Ov‐ZVO) with expanded interlamellar space and excellent structural stability are prepared for superior ZIBs. In situ electron paramagnetic resonance (EPR) and X‐ray diffraction (XRD) characterization revealed that numerous oxygen vacancies are generated at a relatively low reaction temperature because of partially escaped lattice water. In situ spectroscopy and density functional theory (DFT) calculations unraveled that the existence of oxygen vacancies lowered Zn2+ diffusion barriers in Ov‐ZVO and weakened the interaction between Zn and O atoms, thus contributing to excellent electrochemical performance. The Zn||Ov‐ZVO battery displayed a remarkable capacity of 402 mAh g−1 at 0.1 A g−1 and impressive energy output of 193 Wh kg−1 at 2673 W kg−1. As a proof of concept, the Zn||Ov‐ZVO pouch cell can reach a high capacity of 350 mAh g−1 at 0.5 A g−1, demonstrating its enormous potential for practical application. This study provides fundamental insights into formation of oxygen‐vacant nanostructures and generated oxygen vacancies improving electrochemical performance, directing new pathways toward defect‐functionalized advanced materials.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Natural Science Foundation of Jiangsu Province

Natural Science Foundation of Anhui Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3