Tunable Epsilon‐and‐Mu‐Near‐Zero Metacomposites

Author:

Dai Ji1,Jiang Haitao2,Guo Zhiwei2ORCID,Qiu Jun13ORCID

Affiliation:

1. School of Materials Science and Engineering Tongji University Shanghai 201804 P. R. China

2. Key Laboratory of Advanced Micro‐structure Materials (Ministry of Education) School of Physics Science and Engineering Tongji University Shanghai 200092 P. R. China

3. Key Laboratory of Advanced Civil Engineering Materials (Ministry of Education) Tongji University Shanghai 201804 P. R. China

Abstract

AbstractEpsilon‐and‐mu‐near‐zero (EMNZ) metamaterials have garnered significant attention in near‐zero‐parameter metamaterial research for their exceptional ability to attain concurrent near‐zero permittivity and permeability. Nowadays achieving EMNZ properties through the use of metacomposites remains a novel endeavor. Presented here is an innovative approach of near‐zero‐parameter metacomposites, illustrating excellent and tunable EMNZ properties in the radio frequency regime. The self‐organization approach is applied to construct the conductive 3D network and the circuits, serving as the underlying framework for achieving EMNZ properties. Near‐zero permeability is effectively maintained while permittivity reaches epsilon‐near‐zero frequency regime. Efficient manipulation of electromagnetic parameters is initially realized via adjusting component content in metacomposites. Significantly, an excellent EMNZ property is observed as carbon content reaches 15 wt.% at 915 MHz. Through both numerical simulations and experimental testing, the PGC metacomposites have exhibited tunneling effects and directional emission characteristics, confirming their EMNZ properties. Besides, the Lego‐like adjustment facilitates the achievement of EMNZ property and advances the EMNZ frequency point to 700 MHz, expanding the EMNZ range. Furthermore, thanks to the remarkable excitation effect of photo‐induced adjustment, the metacomposite with low‐carbon content also achieves extraordinary EMNZ properties. This research offers promising self‐organized EMNZ metacomposites and lays the foundation for future endeavors in precisely adjusting near‐zero parameters.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3