Plasma‐Assisted Formation of Oxygen Defective NiCoO/NiCoN Heterostructure with Improved ORR/OER Activities for Highly Durable All‐Solid‐State Zinc‐Air Batteries

Author:

Liu Yubing1,Jiang Zhongqing1ORCID,Jiang Zhong‐Jie2

Affiliation:

1. Key Laboratory of Optical Field Manipulation of Zhejiang Province Department of Physics Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China

2. Guangzhou Key Laboratory for Surface Chemistry of Energy Materials Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials College of Environment and Energy South China University of Technology Guangzhou 510006 P. R. China

Abstract

AbstractA plasma approach is reported to synthesize carbon cloth supported carbon fiber and oxygen defect‐rich NiCoO/NiCoN hetero‐nanowire co‐integrated hybrid catalyst (P‐NCO/NCN‐CF@CC), which includes the advanced features of carbon integration, cation doping, defect/vacancy introduction, and heterostructuring. The P‐NCO/NCN shows a fascinating structure with the periphery composed of NCO and the interior co‐composed of NCO and NCN. Its formation mainly depends on the high reactivity of energetic species of NH, Ha, and Hb formed during the plasma discharge. The P‐NCO/NCN‐CF@CC exhibits the oxygen reduction reaction (ORR) activity comparable to the Pt/C and the oxygen evolution reaction (OER) activity higher than RuO2. When used in the all‐solid‐state zinc‐air batteries, it gives a high maximum power density of 109.8 mW cm−2 with no performance drop observed for >300 cycles. The DFT calculations indicate that the NCO/NCN heterostructuring and oxygen defects in NCO play the important roles in the high ORR/OER activities of the catalyst. They can modulate the electronic structure of the catalyst, lowering the energy barriers of rate determining steps.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3