Insights into the Efficiency Improvement for CZTSSe Solar Cells with over 12% Efficiency via Ga Incorporation

Author:

Zhao Xiangyun1,Pan Yining1,Chen Wangxian1,Yang Wentong1,Zeng Qiang1,Li Linhong1,Liao Xiang1,Zhang Zongliang12,Liu Siliang12,Lai Yanqing12,Liu Fangyang12ORCID

Affiliation:

1. School of Metallurgy and Environment Hunan Province Key Laboratory of Nonferrous Value‐Added Metallurgy Central South University Changsha Hunan 410083 China

2. Engineering Research Centre of Advanced Battery Materials The Ministry of Education Changsha Hunan 410083 China

Abstract

AbstractSuppressing the band tailing and nonradiative recombination caused by massive defects and defect clusters is crucial for mitigating open‐circuit voltage (Voc) deficit and improving the device performance of CZTSSe thin film solar cells. Cation substitution is one of the most commonly used strategies to address the above issues. The latest world record efficiency of 13.0% is obtained through this strategy (Ag substitution for Cu). Nevertheless, the importance of the approach to implementing metallic ion doping is easily overlooked by researchers. Here, different approaches are adopted to realize Ga doping and the differences in the efficacy and mechanism are thoroughly investigated. It is found that the secondary phase easily emerged when the physical‐based method is employed, and thus challenging to regulate the doping effect. In the case of the chemical‐based method, Ga doping can enlarge the depletion region widthand lower the defect activation energyand Urbach energy. Furthermore, GaSn defects located at grain boundaries can expand the energy band bending between GBs and grain interiors (GIs), thereby suppressing the deep defect states and nonradiative recombination. Consequently, power conversion efficiency as high as 12.12% with a Voc of 522 mV is achieved at 2% Ga doping.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3