Nerve‐Fiber‐Inspired Construction of 3D Graphene “Tracks” Supported by Wood Fibers for Multifunctional Biocomposite with Metal‐Level Thermal Conductivity

Author:

Zhang Xilin1,Li Jingchao1,Gao Qiang1ORCID,Wang Zhijian2,Ye Neng2,Li Jianzhang1,Lu Yonglai2

Affiliation:

1. Key Laboratory of Wood Material Science and Application (Beijing Forestry University) Ministry of Education & Beijing Key Laboratory of Wood Science and Engineering Beijing Forestry University Beijing 100083 China

2. State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China

Abstract

AbstractGiven the rapid developments in modern electronics, there is an urgent need for polymer composites with excellent heat‐dissipating capabilities to address the cooling problem of these devices. However, designing a highly thermally conductive polymer composite that can outperform metals and ceramics while also exhibiting high processability and low cost remains a challenge. Herein, inspired by the fibrous pathway of human nervous system, natural wood fibers (WFs) are used as the template and coated with graphene nanoplates (GNPs) via a simple electrostatic self‐assembly approach. Subsequent hot‐pressing process yields “core‐sheath” microstructured fibers, wherein the GNPs are compactly contacted face to face and arranged along the surfaces of the fibrous WF “cores”. This WF@G biocomposite consists of highly efficient 3D fibrous “tracks” for heat transmission, resulting in an extremely high thermal conductivity of 134 W (m K)−1, which is at par with those of many metals. It also exhibits several other desirable properties and functionalities, including high mechanical strength and excellent flame resistance as well as remarkable electromagnetic shielding and Joule heating performances, which has significant potential for use as a functional thermal management material (TMM). Hence, this study describes a simple yet scalable manufacturing technique for the development of advanced metal‐level biomass‐based TMMs.

Funder

Natural Science Foundation of Beijing Municipality

Fundamental Research Funds for the Central Universities

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3