A Double‐Charged Organic Molecule Additive to Customize Electric Double Layer for Super‐Stable and Deep‐Rechargeable Zn Metal Pouch Batteries

Author:

Hu Nan1,Lv Wensong1,Chen Wenjian1,Tang Huan2,Zhang Xiaoyan1,Qin Hongyu1,Huang Dan2,Zhu Jinliang3,Chen Zhengjun1,Xu Jing1,He Huibing1ORCID

Affiliation:

1. School of Chemistry and Chemical Engineering Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology Guangxi Key Laboratory of Electrochemical Energy Materials Guangxi University Nanning 530004 P. R. China

2. School of Physical Science and Technology Guangxi Novel Battery Materials Research Center of Engineering Technology Guangxi University Nanning 530004 P. R. China

3. School of Resources, Environment, and Materials Collaborative Innovation Center of Sustainable Energy Materials Guangxi Key Laboratory of Processing for Non‐ferrous Metals and Featured Materials Guangxi University Nanning 530004 P. R. China

Abstract

AbstractThe electrochemical performance of aqueous zinc metal batteries (AZMBs) is highly dependent on the electric double layer (EDL) properties at Zn electrode/electrolyte interface. Herein, a novel reconfigured EDL is constructed via a double‐charged theanine (TN) additive for super‐stable and deep‐rechargeable AZMBs. Experiments and theoretical computations unravel that the positively charged TN not only serves as preferential anchor to form a water‐poor Helmholtz plane onto the Zn anode, but also its anionic end could coordinate with Zn2+ to tailor the solvation structure in the diffusion layer and further reconstruct the inner H‐bonds networks, thus effectively guiding uniform Zn deposition and suppressing the water‐induced side reactions. Consequently, the Zn//Zn cells acquire outstanding cycling stabilities of nearly 800 h at a high depth of discharge of 80%. Moreover, the Zn//VOX full cells deliver substantial capacity retention (94.12% after 1400 cycles at 2 A g−1) under practical conditions. Importantly, the designed 2.7 Ah Zn//VOX pouch cell harvests a recorded energy density of 42.3 Wh Kgcell−1 and 79.5 Wh Lcell–1, with a remarkable capacity retention of 85.93% after 220 cycles at 50 mA g−1. This innovative design concept to reshape the EDL chemistry would inject fresh vitality into developing advanced AZMBs and beyond.

Funder

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University

Natural Science Foundation of Guangxi Province

National Natural Science Foundation of China

Specific Research Project of Guangxi for Research Bases and Talents

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3