Muticomponent Melt‐Electrowritten Vascular Graft to Mimic and Guide Regeneration of Small Diameter Blood Vessels

Author:

Federici Angelica S.123,Garcia Orquidea4,Kelly Daniel J.1235,Hoey David A.1235ORCID

Affiliation:

1. Department of Mechanical, Manufacturing and Biomedical Engineering School of Engineering Trinity College Dublin D02PN40 Ireland

2. Trinity Centre for Biomedical Engineering Trinity Biomedical Sciences Institute Trinity College Dublin D02R590 Ireland

3. AMBER The SFI Research Centre for Advanced Materials and Bioengineering Research Dublin D02W085 Ireland

4. Johnson & Johnson 3D Printing Innovation & Customer Solutions Johnson & Johnson Services, Inc. Irvine 92618 CA USA

5. Department of Anatomy and Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) Dublin D02 YN77 Ireland

Abstract

AbstractCardiovascular disease is a leading cause of morbidity. Current treatments include vessel substitution using autologous/synthetic vascular grafts, but these commonly fail in small diameter applications, largely due to compliance mismatch and clot formation. In this study, a multicomponent vascular graft, that takes inspiration from native vessel architecture, is developed to overcome these limitations. Melt electrowriting (MEW) is used to produce tubular scaffolds with vascular‐mimetic fiber architecture and mechanics, which is combined with a lyophilized fibrinogen matrix with tailored degradation kinetics to generate a hybrid graft. The MEW framework not only contributes to graft mechanics, but also provides contact guidance to direct cell/neotissue orientation and mimic the native tunica media. This construct is further functionalized with heparin, which in combination with the smooth extracellular matrix (ECM) surface, reduced platelet adhesion and clot formation providing a substrate for endothelization, thereby mimicking the function of the intima. Lastly, an outer electrospun layer representing the adventitia is added to improve elasticity and reduce permeability. This graft satisfies ISO implantability requirements, matches the compliance of native vessels, and reestablishes physiological flow with minimal clot formation in a preclinical model. Therefore, this graft represents an innovative off‐the‐shelf alternative to address the unmet clinical need for small‐diameter vascular grafts.

Funder

Science Foundation Ireland

European Regional Development Fund

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3