3D Printing of Multifunctional Conductive Polymer Composite Hydrogels

Author:

Liu Ji12,Garcia James13,Leahy Liam M.4,Song Rijian5,Mullarkey Daragh13,Fei Ban1,Dervan Adrian4,Shvets Igor V.13,Stamenov Plamen13,Wang Wenxin5,O'Brien Fergal J.46,Coleman Jonathan N.13,Nicolosi Valeria12ORCID

Affiliation:

1. Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) and Advanced Materials Bio‐Engineering Research Centre (AMBER) Trinity College Dublin Dublin Ireland

2. School of Chemistry Trinity College Dublin Dublin Ireland

3. School of Physics Trinity College Dublin Dublin Ireland

4. Tissue Engineering Research Group Department of Anatomy & Regenerative Medicine Royal College of Surgeons in Ireland (RCSI) Dublin Ireland

5. Charles Institute of Dermatology School of Medicine University College Dublin Dublin Ireland

6. Trinity Centre for Biomedical Engineering (TCBE) Trinity College Dublin Dublin Ireland

Abstract

AbstractFunctional conductive hydrogels are widely used in various application scenarios, such as artificial skin, cell scaffolds, and implantable bioelectronics. However, their novel designs and technological innovations are severely hampered by traditional manufacturing approaches. Direct ink writing (DIW) is considered a viable industrial‐production 3D‐printing technology for the custom production of hydrogels according to the intended applications. Unfortunately, creating functional conductive hydrogels by DIW has long been plagued by complicated ink formulation and printing processes. In this study, a highly 3D printable poly(3,4‐ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)‐based ink made from fully commercially accessible raw materials is demonstrated. It is shown that complex structures can be directly printed with this ink and then precisely converted into high‐performance hydrogels via a post‐printing freeze–thawing treatment. The 3D‐printed hydrogel exhibits high electrical conductivity of ≈2000 S m−1, outstanding elasticity, high stability and durability in water, electromagnetic interference shielding, and sensing capabilities. Moreover, the hydrogel is biocompatible, showing great potential for implantable and tissue engineering applications. With significant advantages, the fabrication strategy is expected to open up a new route to create multifunctional hydrogels with custom features, and can bring new opportunities to broaden the applications of hydrogel materials.

Funder

Science Foundation Ireland

European Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3