Anisotropic ZnS Nanoclusters/Ordered Macro‐Microporous Carbon Superstructure for Fibrous Supercapacitor toward Commercial‐Level Energy Density

Author:

Wu Xingjiang1ORCID,Yu Xude1,Zhang Zekai2,Liu Hengyuan1,Ling SiDa1,Liu Xueyan1,Lian Cheng2,Xu Jianhong1ORCID

Affiliation:

1. The State Key Laboratory of Chemical Engineering Department of Chemical Engineering Tsinghua University Beijing 100084 P. R. China

2. The State Key Laboratory of Chemical Engineering and Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Chemical Engineering School of Chemistry and Molecular Engineering East China University of Science and Technology Shanghai 200237 P. R. China

Abstract

AbstractFibrous supercapacitor (FSC) is of great attention in wearable electronics, but is challenged by low energy density, owing to disordered diffusion pathway and sluggish redox kinetics. Herein, using micro‐reaction strategy, an anisotropic superstructure is developed by in situ anchoring ultrafine zinc sulfine (ZnS) nanoclusters on conductively ordered macro‐microporous carbon skeleton via interfacial CSZn bonds (ZnS/SOM‐C). The anisotropic superstructure affords 3D ordered macro‐microporous pathways, large accessible surfaces, and highly dispersed active sites, which exhibit enhanced electrolyte mass diffusion, rapid interfacial charge transfer, and large faradaic ions storage (capacitance of 1158 F g−1 in KOH aqueous solution). By microfluidic spinning, the ZnS/SOM‐C is further assembled into fibrous electrode of FSC that delivers high capacitance (791 F g−1), commercial‐level energy density (172 mWh g−1), and durable stability. As a result, the FSC can realize wearable self‐powered applications (e.g., self‐cleaning ventilatory mask, smartwatch, and display), exhibiting the superiority in new energy and wearable industry.

Funder

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3