Affiliation:
1. Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon‐Based Electronics School of Electronics Peking University Beijing 100871 China
2. State Key Laboratory of Advanced Optical Communication Systems and Networks School of Electronics Peking University Beijing 100871 China
3. Jihua Laboratory Foshan 528200 China
Abstract
AbstractNext‐generation shortwave infrared (SWIR) imaging systems generally require a multidimensional information sensing capability (including intensity, wavelength, polarization, phase, etc.), a highly integrated photodetector unit, and information processing, allowing for miniaturization and low‐cost production. However, traditional polarized SWIR imaging systems with integrated polarizer arrays as supplementary filters and silicon‐based amplifying circuits are complicated and very expensive. Here, a SWIR polarization‐sensitive photodetector and a monolithic integrated polarization amplification system (MIPAS) based on well‐aligned carbon nanotube (CNT) arrays are demonstrated. The polarization‐sensitive CNT photodetector exhibits anisotropic ratios of ≈5.18 and ≈7.56 at 1800 and 2000 nm wavelengths, respectively, and high‐resolution characteristics that can be utilized to image SWIR laser spots with a radius of less than 10 µm. Furthermore, MIPAS including a CNT field‐effect transistor, a CNT loading resistor, and a polarization‐sensitive CNT photodetector is used to increase the anisotropic ratio of the CNT photodetector. The amplified anisotropic ratio is improved up to 173 and 243 at 1800 and 2000 nm wavelengths, respectively, which is the maximum reported in the SWIR band. Our work demonstrates that the CNT polarization‐sensitive photodetector has the potential for SWIR polarization imaging with a monolithic integrated polarization amplification system.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献