Rational Design and Synthesis of Lignin‐Derived Smart Sunscreens

Author:

Wu Ying1,Wu Xuwen1,Zhang Aicheng1,Ouyang Xinping1,Lou Hongming1,Yang Dongjie1,Qian Yong1ORCID,Qiu Xueqing2

Affiliation:

1. School of Chemistry and Chemical Engineering Guangdong Provincial Key Lab of Green Chemical Product Technology State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510640 China

2. School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 China

Abstract

AbstractLignin exhibits a long‐active UV‐blocking property due to its macromolecular aromatic structure and unique semiquione‐quione‐hydroquione transition. However, its poor absorbance in UVA region (320–400 nm) and irregular aggregation are still the obstacles. Herein, active spirapyrane (SP‐Br) is synthesized and covalently introduced into alkali lignin (AL) to construct photo‐stimulated UV‐absorbing enhancement sunscreen actives (AL‐SPn). The introduction of SP significantly improved the absorbance of AL in UVA region and its aggregation is effectively eased. When the optimal AL‐SP3 solution is exposed to UV irradiation, the color turned purple, and the absorbance in UVA region further improved as the unconjugated SP transformed into conjugated merocyanine (MC) structure. When the light is removed, the solution recovered light yellow. The antioxidant property of AL endow the reversible SP‐MC transformation with good cyclic stability. As‐prepared AL‐SP3 based sunscreen exhibit obvious photo‐stimulated enhancement effect. The sun protection factor (SPF) improved from 23 to 89 after 4 h irradiation, and can maintain the high performance for another 8 h. In addition, it exhibit low permeation and good biocompatibily in vitro and vivo, demonstrating its good potential in practical use.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3