Integration of Tumor Elimination And Tissue Regeneration via Selective Manipulation of Physiological Microenvironments Based on Intelligent Nanocomposite Hydrogel for Postoperative Treatment of Malignant Melanoma

Author:

Chen Li1,Yang Tianfeng2,Weng Lin1,Chang Xiaowei1,Liu Jie1,Peng Xiuhong2,Cheng Cheng2,Han Peng3,Zhang Yanmin2,Chen Xin1ORCID

Affiliation:

1. Department of Chemical Engineering Shaanxi Key Laboratory of Energy Chemical Process Intensification Institute of Polymer Science in Chemical Engineering School of Chemical Engineering and Technology Xi'an Jiaotong University Xi'an 710049 P. R. China

2. School of Pharmacy Health Science Center Xi'an Jiaotong University Xi'an 710061 P.R. China

3. Department of Otorhinolaryngology‐Head and Neck Surgery First Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710061 P. R. China

Abstract

AbstractTumor residue and tissue damage normally occurred after surgical treatment of malignant melanoma, and the effective postoperative therapy is still a challenge because the treatment requests simultaneous but opposite manipulation of tumor cells and healthy cells. Herein, MBGP‐Gel, a thermosensitive and biodegradable hydrogel incorporating S‐nitrosoglutathione (GSNO) loaded and N‐aminoethyl‐N’‐benzoyl thiourea (BTU) modified MSNs (MBGP NPs), was designed to utilize the significant difference of copper content between tumor cells and healthy cells to regulate various physiological microenvironments for integrative therapy of tumor elimination, metastasis inhibition and tissue regeneration. The MBGP‐Gel underwent sol‐gel transformation at body temperature after injection, and continuously released MBGP nanoparticles. In tumor cells, these nanoparticles would chelate the excess copper to inhibit the tumor migration. Meanwhile, copper was reduced to cuprous, which further catalyzed the abundant H2O2 and GSNO to produce oxygen species (ROS) and nitric oxide (NO), respectively. The ROS and the reaction product of ROS and NO (ONOO) would significantly damage the tumor tissue. In contrast, MBGP nanoparticles entered healthy cells only generate appropriate amount of NO to accelerate tissue healing. Both in vitro and in vivo results showed that the nanocomposite hydrogel could inhibit the growth and metastasis of malignant melanoma and promote the skin regeneration, which offered an promising strategy for postoperative treatment of various tumors.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shaanxi Province

Shanghai Jiao Tong University

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3