Layered Bismuth Selenide with a Kinetics‐Enhanced Iodine Doping Strategy Toward High‐Performance Aqueous Potassium‐Ion Storage

Author:

Zhang Wei123,Sun Yuanhe12,Yang Junwei4,Ren Zhiguo12,Zhao Yuanxin12,Lei Qi12,Si Jingying12,Lin Mengru1,Chen Jige1,Li Xiaolong12,Wen Wen12,Li Aiguo12,Zhu Daming12ORCID

Affiliation:

1. Shanghai Institute of Applied Physics Chinese Academy of Sciences Shanghai 201800 China

2. Shanghai Synchrotron Radiation Facility Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 China

3. University of Chinese Academy of Sciences Beijing 100049 China

4. School of Arts and Sciences Shanghai Dianji University Shanghai 201306 China

Abstract

AbstractAqueous potassium‐ion batteries with inherent safety, high abundance, and competitive hydrated ion‐radius point to future availability in energy storage. However, the extensively studied electrodes (metal‐oxides, Prussian‐blue‐analogues, etc.) typically suffer from undesirable capacities and sluggish kinetics owing to overwhelming ion diffusion barriers. Herein, for the first time, the metal chalcogenide bismuth selenide reinforced by iodine‐doping (I‐Bi2Se3) is implemented for high‐performance aqueous potassium‐ion storage. The co‐intercalation mechanism of potassium‐ion with proton in I‐Bi2Se3 is entirely revealed by operando synchrotron X‐ray diffraction and substantial ex‐situ analysis, and the excellent interlayer diffusion kinetics in the high‐conductive host are further enhanced by iodine‐doping, as proposed by theoretic calculations. Therefore, the resulting high diffusion coefficient and low interfacial transfer resistance endow I‐Bi2Se3 with superior rate performance (109.2 mAh g−1 at 10 A g−1) and cycling stability (91% capacity retention after 1200 cycles). Employing in hybrid‐ion batteries matching zinc metal, the highest reversible aqueous potassium‐ion storage to date of 316.8 mAh g−1 is demonstrated, permitting the establishment of reliable performance pouch cells. The promising aqueous potassium intercalation chemistry built in the improved metal chalcogenide is proven to be extendable to other hybrid‐ion devices, offering novel mechanistic insights and material practices for aqueous energy storage.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3