Calcite Twinning in Mollusk Shells and Carrara Marble

Author:

Castillo Alvarez Cristina1,Grimsich John L.2,Schmidt Connor A.3,Lisabeth Harrison4,Voigtländer Anne4,Gilbert Pupa U. P. A.135ORCID

Affiliation:

1. Chemical Sciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

2. Department of Earth and Planetary Sciences University of California Berkeley Berkeley CA 94720 USA

3. Department of Physics University of Wisconsin Madison WI 53706 USA

4. Energy Geosciences Division Lawrence Berkeley National Laboratory Berkeley CA 94720 USA

5. Departments of Chemistry, Materials Science and Engineering, Geoscience University of Wisconsin Madison WI 53706 USA

Abstract

AbstractMollusk shells protect the animals that form and inhabit them. They are composites of minerals and organics, with diverse mesostructures, including nacre, prismatic calcite, crossed‐lamellar aragonite, and foliated calcite. Twins, that is, crystals mirror symmetric with respect to their coherent interface, occurring as formation or deformation twins, are observed in all mollusk shell mesostructures but never within calcite prisms. Here, nanotwins and microwins within single calcite prisms are observed in different shells. Using Polarization‐dependent Imaging Contrast (PIC) mapping with 20–60 nm resolution, twins are observed to be 0.2–3 µm thick layers of differently oriented and colored crystals with respect to the main prism crystal. Multiple twins are interspersed with the prism crystal, parallel to one another, and similarly oriented. When comparing images of calcite prisms and twins obtained by PIC mapping and by Electron Back‐Scattered Diffraction (EBSD), the images correspond precisely. All twins are e‐twin types, with 127° angular distance between c‐axes. E‐twins are the most common deformation twins in geologic calcite, as also observed here in Carrara marble. Location of all twins near the outer surface of all shells and e‐twin type both suggest that twins within calcite prisms in mollusk shells result from deformation twinning.

Funder

National Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3