Highly Stretchable and Conductive MXene‐Encapsulated Liquid Metal Hydrogels for Bioinspired Self‐Sensing Soft Actuators

Author:

Ma Shaoshuai1,Xue Pan1,Valenzuela Cristian1,Zhang Xuan1,Chen Yuanhao1,Liu Yuan1,Yang Le1,Xu Xinhua1,Wang Ling12ORCID

Affiliation:

1. School of Materials Science and Engineering Tianjin University Tianjin 300350 China

2. Binhai Industrial Research Institute Tianjin University Tianjin 300452 China

Abstract

AbstractAdvanced sensation and actuation abilities of various living organisms in nature have inspired researchers to design bioinspired self‐sensing soft actuators. However, the majority of conventional soft actuators primarily possess actuation capabilities while lacking a real‐time sensing signal feedback. Here, a promising strategy is reported to develop highly stretchable and conductive hydrogels for bioinspired self‐sensing soft actuators, which integrate actuation and strain‐sensing functions into a single materials system. The conductive hydrogels are designed and fabricated by in situ copolymerization of amino‐functionalized MXene‐encapsulated liquid metal nanodroplets (LM@A‐MXene) and poly(N‐isopropylacrylamide) hydrogels with controllable activated nanogels as nano‐cross‐linkers. The resulting hydrogel presents a compacted conducting network and highly porous microstructure, giving rise to robust integration of high conductivity, excellent strain sensitivity, broad stretchability, high stability, and fast response speed. Interestingly, the gradient network structure, formed by self‐precipitation of LM@A‐MXene, endows the hydrogel with shape‐programmable actuation, light‐driven remote control, and self‐sensing function. As a proof‐of‐concept application, the soft gripper based on the self‐sensing hydrogel actuators is developed, which can not only grasp, lift, and release objects, but also perceive every movement state by monitoring resistance changes. The proposed self‐sensing soft actuator can offer new insights for developing smart soft robotics and other artificial intelligent devices.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Natural Science Foundation of Tianjin Municipality

Science Fund for Distinguished Young Scholars of Tianjin Municipality

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3