Recent Advances in Liquid Metals for Rechargeable Batteries

Author:

Ponnuru Hanisha1ORCID,Marriam Ifra12ORCID,Rambukwella Imesha1ORCID,Zheng Jun‐Chao3,Yan Cheng12ORCID

Affiliation:

1. School of Mechanical, Medical, and Process Engineering Faculty of Engineering Queensland University of Technology 2 George Street Brisbane QLD 4000 Australia

2. Centre for Material Science Queensland University of Technology 2 George Street Brisbane Queensland 4000 Australia

3. School of Metallurgy and Environment Central South University Changsha Hunan 410083 China

Abstract

AbstractLiquid metals (LMs) with their unique properties are considered for a range of applications such as energy storage, catalysis, electronics, and biomedical engineering. Recently, the introduction of LMs into rechargeable batteries has not only proven to improve overall performance but also overcome commonly known challenges like low energy density, material degradation, interface failure, and poor system integrity. Specifically, room‐temperature LMs such as gallium (Ga), Ga‐based alloys (GBAs), and metallic mercury (Hg) are promising candidates in rechargeable batteries due to their low viscosity, high electrical and thermal conductivity, excellent deformability, superior electrochemical properties, and self‐healing capability. Herein, a review of recent advances in LMs for rechargeable batteries, starting with a brief introduction to LMs fundamentals and their properties is presented. Then, an extensive literature review is carried out to summarize the LMs’ advances in addressing existing challenges of lithium‐ion, lithium‐metal, lithium–sulfur, and other rechargeable batteries. The current state of the art and future perspective are also put forward. It is believed that highlighting potential developments pertaining to LMs can fascinate researchers in exploring them for future rechargeable batteries.

Funder

Australian Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3