Affiliation:
1. Key Laboratory of Special Functional Materials Ministry of Education National & Local Joint Engineering Research Center for Efficient Display and Lighting Technology Collaborative Innovation Center for Nano Functional Materials and Applications School of Materials Science and Engineering Henan University Kaifeng 475004 China
Abstract
AbstractThe photoelectric synaptic devices with the bidirectional optical response and multilevel nonvolatile all‐optical pulse control are the basis for constructing the sensing‐memory‐computing hardware network. However, the current all‐optical‐pulse‐regulated photoelectric synaptic devices cannot realize the bidirectional and multistage nonvolatile regulation of photocurrent responsivity under the detection light excitation. Here, p‐Si/n‐ZnO heterojunction synaptic devices are constructed, and the bidirectional, nonvolatile control of the synaptic device under visible light excitation is realized with up to 60 states of photocurrent responsivity by ultraviolet (UV) and near‐infrared (NIR) irradiation. Based on the performance of the synaptic device, the artificial feedback network can be built to realize the classification and recognition of colored handwritten digits. The recognition accuracy for optical handwritten digits at 415, 530, and 970 nm is 78.1 ± 1.2%, 79.4 ± 1.9% and 79.0 ± 1.6%, respectively. Additionally, the 3 × 3 convolution kernel constructed by the synaptic device can realize image‐processing functions like mean filtering, Gaussian filtering, and edge enhancement. The development of sensing‐storage‐computing all‐optical control artificial vision hardware networks can be greatly aided by the new approach to bidirectional and multistage nonvolatile all‐optical pulse regulation of photoelectric synaptic devices that is proposed in this paper.
Funder
National Natural Science Foundation of China
Henan Provincial Science and Technology Research Project
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献