The Synergistic Effect of Pemirolast Potassium on Carrier Management and Strain Release for High‐Performance Inverted Perovskite Solar Cells

Author:

Li Jun12,Xie Lisha1,Pu Zhenwei1,Liu Chang1,Yang Mengjin1,Meng Yuanyuan1,Han Bin1,Bu Shixiao1,Wang Yaohua1,Zhang Xiaoli3,Wang Tao2,Ge Ziyi1ORCID

Affiliation:

1. Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China

2. School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China

3. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China

Abstract

AbstractThe quality of the perovskite absorption layer is critical for the high efficiency and long‐term stability of perovskite solar cells (PSCs). The inhomogeneity due to local lattice mismatch causes severe residual strain in low‐quality perovskite films, which greatly limits the availability of high‐performance PSCs. In this study, a multi‐active‐site potassium salt, pemirolast potassium (PP), is added to perovskite films to improve carrier dynamics and release residual stress. X‐ray photoelectron spectroscopy (XPS) and Fourier‐transform infrared spectroscopy (FTIR) measurements suggest that the proposed multifunctional additive bonds with uncoordinated Pb2+ through the carbonyl group/tetrazole N and passivated I atom defects. Moreover, the residual stress release is effective from the surface to the entire perovskite layer, and carrier extraction/transport is promoted in PP‐modified perovskite films. As a result, a champion power conversion efficiency (PCE) of 23.06% with an ultra‐high fill factor (FF) of 84.36% is achieved in the PP‐modified device, which ranks among the best in formamidinium‐cesium (FACs) PSCs. In addition, the PP‐modified device exhibits excellent thermal stability due to the inhibited phase separation. This work provides a reliable way to improve the efficiency and stability of PSCs by releasing residual stress in perovskite films through additive engineering.

Funder

National Science Fund for Distinguished Young Scholars

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3