Affiliation:
1. Zhejiang Provincial Engineering Research Center of Energy Optoelectronic Materials and Devices Ningbo Institute of Materials Technology & Engineering Chinese Academy of Sciences Ningbo 315201 P. R. China
2. School of Materials Science and Engineering Zhejiang Sci‐Tech University Hangzhou 310018 P. R. China
3. School of Materials Science and Engineering Zhengzhou University Zhengzhou 450001 P. R. China
Abstract
AbstractThe quality of the perovskite absorption layer is critical for the high efficiency and long‐term stability of perovskite solar cells (PSCs). The inhomogeneity due to local lattice mismatch causes severe residual strain in low‐quality perovskite films, which greatly limits the availability of high‐performance PSCs. In this study, a multi‐active‐site potassium salt, pemirolast potassium (PP), is added to perovskite films to improve carrier dynamics and release residual stress. X‐ray photoelectron spectroscopy (XPS) and Fourier‐transform infrared spectroscopy (FTIR) measurements suggest that the proposed multifunctional additive bonds with uncoordinated Pb2+ through the carbonyl group/tetrazole N and passivated I atom defects. Moreover, the residual stress release is effective from the surface to the entire perovskite layer, and carrier extraction/transport is promoted in PP‐modified perovskite films. As a result, a champion power conversion efficiency (PCE) of 23.06% with an ultra‐high fill factor (FF) of 84.36% is achieved in the PP‐modified device, which ranks among the best in formamidinium‐cesium (FACs) PSCs. In addition, the PP‐modified device exhibits excellent thermal stability due to the inhibited phase separation. This work provides a reliable way to improve the efficiency and stability of PSCs by releasing residual stress in perovskite films through additive engineering.
Funder
National Science Fund for Distinguished Young Scholars
National Natural Science Foundation of China
China Postdoctoral Science Foundation
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献