Understanding the Impact of Peripheral Substitution on the Activity of Co Phthalocyanine in Sulfur Reduction Catalysis

Author:

Zhao Xinhong1,Zhang Yukun1,Liu Weizhe1,Zheng Zhiqiang1,Fu Zhanghua1,Chen Chuanzhong1,Hu Cheng1ORCID

Affiliation:

1. Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education) School of Materials Science and Engineering Shandong University Ji'nan Shandong 250061 P. R. China

Abstract

AbstractCatalytic materials are effective in promoting sulfur utilization in lithium‐sulfur batteries. Co phthalocyanine (CoPc) presents a unique planner single‐molecular structure with a highly active Co‐N4 center for sulfur reduction catalysis. The high flexibility of phthalocyanines offers rich opportunities for electronic structure modulation toward enhanced catalytic activities. To guide future design and screening, this study aims to understand the impact of peripheral substitution, the most common method to obtain CoPc derivatives, by examining two typical substituents: the electron‐withdrawing nitro and electron‐donating amino groups. Co tetranitrophthalocyanine (CoTnPc) presents a significantly higher activity in promoting the liquid‐solid transition process than Co tetraaminophthalocyanine (CoTaPc). Substitution alters the stable binding geometry of Li2S4 by influencing the electrostatic potential and Li─bond, making the Co─S bond energetically favorable with the bridging S atoms on CoTnPc. CoTnPc also enables a greater electron donation from the S 3pz orbital to the singly occupied Co 3 orbital, significantly weakening the bridging S─S bond to enhance the reactivity of Li2S4 for the subsequent liquid‐solid transition. A framework of theoretical calculation is tested, providing descriptors for the screening of related materials. The potential of CoPc derivatives is demonstrated by pouch cells with CoTnPc under high sulfur loading and limited electrolyte addition.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3