Advances in Polymer‐Based Organic Room‐Temperature Phosphorescence Materials

Author:

Dou Xueyu1,Wang Xu1,Xie Xilei1,Zhang Jian1,Li Yong1,Tang Bo1ORCID

Affiliation:

1. College of Chemistry Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes Ministry of Education Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong Institute of Molecular and Nano Science Shandong Normal University Jinan 250014 China

Abstract

AbstractOrganic room‐temperature phosphorescence (RTP) materials are actively explored as attractive candidates for optoelectronic and bioelectronics applications given their unique long‐lived excited‐state features and inherent merits of low‐cost, appreciable functionality, and good biocompatibility. In recent years, many efforts in molecular design and aggregation modulation are devoted to achiev efficient RTP from organics, among which an emerging strategy focuses on confining chromophores within polymer matrices. Polymers possess intertwined chains making them a good platform to restrain the nonradiative decays and quenching, allowing the triplet excitons to survive a long time enough for emission at room temperature. Progress relating to polymer‐based organic RTP materials is highlighted as a new creative subject in the field. This review outlines recent advancements in polymer‐based organic RTP materials. The fundamental mechanism of organic RTP is first presented. Thereafter, design considerations and strategies to construct polymer‐based organic RTP materials are summarized in detail. Several promising progresses in the proposed use of these RTP materials, such as encryption and anti‐counterfeiting, sensors, and bioimaging are overviewed. Finally, the challenges and future perspectives are discussed to emphasize the directions that deserve focus attention in the field.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3