Innovative Conversion Strategy for Wastewater with One‐Pot Uranium Extraction and Valuable Chemical Production by a Smart COF Photocatalyst

Author:

Guo Liecheng1,Yang Yuting2,Gong Lele3,Zhang Qingyun1,Liao Yuxin1,Hua Rong1,Yu Zhiwu4,Luo Feng1ORCID

Affiliation:

1. School of Chemistry and Materials Science School of Nuclear Science and Engineering East China University of Technology Nanchang 330013 China

2. College of Chemistry and Environmental Science Qujing Normal University Qujing 655011 China

3. State Key Laboratory of NBC Protection for Civilian Beijing 100191 China

4. High Magnetic Field Laboratory Chinese Academy of Sciences Hefei 230031 China

Abstract

AbstractEnvironmental protection and resource reclamation make the extraction of uranium from uranium‐containing wastewater be a key role in the nuclear chemistry and industry. Although previous studies have revealed several effective methods and materials for such use, however, few studies are concerned about the wastewater discharge issues. In fact, the direct discharge of treated wastewater into the environment is still not a green way. Here, an innovative conversion approach is shown, which can simultaneously achieve the uranium extraction and conversion of wastewater to valuable chemical. This concept is implemented by an azobenzene‐pendent covalent organic framework, showing smart trans‐to‐cis photoresponsive properties in both space and electronic structure and consequently, largely enhanced extraction and conversion efficiency under UV irradiation, relative to visible light irradiation. In real wastewater, the material is found to give selective and 100% uranium extraction and H2O2 generation (1872.3 µmol g−1 h−1). The mechanism is due to a unique photocatalysis coupling between the uranium reduction reaction (URR), aiming at uranium recovery or removal, and the water oxidation reaction (WOR), targeting the conversion of wastewater into a valuable chemical of H2O2.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3