A Low‐Hysteresis and Highly Stretchable Ionogel Enabled by Well Dispersed Slidable Cross‐Linker for Rapid Human‐Machine Interaction

Author:

Du Ruichun1,Bao Tianwei1,Zhu Tangsong1,Zhang Jing2,Huang Xinxin1,Jin Qi1,Xin Ming2,Pan Lijia2,Zhang Qiuhong1ORCID,Jia Xudong13

Affiliation:

1. Key Laboratory of High Performance Polymer Material and Technology of MOE Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Nanjing 210093 P. R. China

2. Collaborative Innovation Center of Advanced Microstructures School of Electronic Science and Engineering Nanjing University Nanjing 210093 P. R. China

3. State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210093 P. R. China

Abstract

AbstractIonic conductive soft materials for mimicking human skin are a promising topic since they can be thought of as a possible basis for biomimetic sensing. In pursuit of devices with a long working range and low signal delay, conductive materials with low hysteresis and good stretchability are highly demanded. To overcome the challenges of highly stretchable conductive materials with good resilience, herein a chemical design is proposed where polyrotaxanes act as topological cross‐linkers to enhance the stretchability by sliding‐induced reduced stress concentration while the compatible ionic liquid is introduced as a dispersant for low hysteresis. The obtained ionogels exhibit versatile properties more than low hysteresis (residual strain = 7%) and good stretchability (550%), and also anti‐fatigue, biocompatibility, and good adhesion. The low hysteresis is attributed to lower energy dissipation from the well‐dispersed polyrotaxanes by compatible ionic liquids. The mechanism provides a new insight in fabricating highly stretchable and low‐hysteresis slide‐ring materials. Furthermore, the conductivity of the ionogels and their responses to strains and temperatures are measured. Benefiting from the good conductivity and low hysteresis, the ionogel is applied to develop a wireless communication system to realize rapid human‐machine interactions.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3