A Biphasic Membraneless Zinc‐Iodine Battery with High Volumetric Capacity

Author:

Zou Jiawei1,Wang Guotao1ORCID,Lin Shiyu1,Yang Han1,Ma Xinxi2,Ji Huajian1,Zhu Siao3,Lyu Yimeng1,Wang Chao2,Zhou Yunlei4,He Qiong1,Wang Qianhui1,Gao Fei1,Zhang Zhen1,Hao Tianqi5,Wang Zhoulu1,Zhang Yi1,Liu Xiang1,Wu Yutong1ORCID

Affiliation:

1. School of Energy Sciences and Engineering Nanjing Tech University Nanjing Jiangsu 211816 China

2. School of Chemistry and Chemical Engineering Yangzhou University Yangzhou Jiangsu 225002 China

3. School of Physical Science and Technology Shanghai Tech University Shanghai 201203 China

4. Hangzhou Institute of Technology Xidian University Hangzhou Zhejiang 311231 China

5. College of Chemistry and Chemical Engineering Donghua University Shanghai 201620 China

Abstract

AbstractAs one of the latest research directions, membraneless batteries provide an economical solution to redox flow batteries. Advances in electrolyte and device design have promoted membraneless batteries from microfluidic demonstration to systems with stimulated modes and considerable electrochemical properties. However, the achieved cycling volumetric capacity is typically limited. Herein, a biphasic membraneless zinc‐iodine battery (Z|T‐I) is proposed, through optimized Zn growth, the Z|T‐I battery achieved a volumetric capacity of 8.93 Ah L−1 for 100 cycles with an average Coulombic efficiency (CE) of 98.49% (2300 h), the deep cycling exhibited a volumetric capacity of 21.7 Ah L−1 (50.43 Wh L−1 based on typical membraneless battery calculation, 1200 h); both values are the highest among single/biphasic membraneless batteries using liquid active materials with/out stimulations (<6.6 Ah L−1) reported so far based on the total electrolyte volume. A thorough analysis of Zn growth in Zn‐Br2/I2 electrolytes with various testing conditions provided direct evidence of the contrasting Zn electrodeposition morphologies at both macro and micro scales. The biphasic ZnI2 battery design strategy gives insights into optimizing material crossover/spatial utilization and electrolyte interfacial stability to realize a scalable membraneless energy storage system with a reduced cost.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3