Biomimetic Structural Design of Fabric for Low‐Cost, Scalable, and Highly Efficient Off‐Grid Solar‐Driven Water Purification

Author:

Tian Yankuan1,Song Rui2,Li Yiju3ORCID,Zhu Ruishu1,Yang Xin1,Wu Dequn1,Wang Xueli4,Song Jianwei2,Yu Jianyong4,Gao Tingting1,Li Faxue1

Affiliation:

1. Shanghai Frontiers Science Center of Advanced Textiles College of Textiles Donghua University Shanghai 201620 P. R. China

2. State Key Laboratory for Strength and Vibration of Mechanical Structures School of Aerospace Engineering Xi'an Jiaotong University Xi'an 710049 P. R. China

3. Department of Mechanical and Energy Engineering Southern University of Science and Technology Shenzhen 518055 P. R. China

4. Innovation Center for Textile Science & Technology Donghua University Shanghai 201620 P. R. China

Abstract

AbstractInterfacial solar‐vapor generation (ISVG) is an emerging technology for water purification. However, high cost, low evaporation rate, clogging issues, and limited solar utilization under natural condictions greatly hinder its practical application. Herein, inspired by the aligned microstructure of dragonfly wings, a 3D microarray structure composed of vertically aligned hierarchical and hydrophilic carbon fibers (CFs) is constructed using a scalable fiber manufacturing technology. The microarray structure of the high‐thermal‐conductivity CFs with nanocapillaries contributes to the fast mass (steam and salt ions) and heat transfer as well as high omnidirectional light absorption. More importantly, due to the strong multiscale capillary effect, the formed 3D water evaporation surface containing abundant micro‐meniscuses and nanoscale thin water layers in the CFs arrays effectively reduces the evaporation enthalpy and creates more water/air interfaces, leading to the significant increasing evaporation rate. As a result, a high evaporation rate of 2.21 kg m−2 h−1 under one‐sun irradiation can be achieved. Moreover, the off‐grid water treatment device assembled with multiple 3D CFs‐based customized spherical evaporators can obtain a high pure water collection of 10.71 kg m−2 per day without salt accumulation under real environmental conditions. This work demonstrates a high‐efficiency, cost‐effective, and scalable strategy for high‐performance ISVG.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3