Active Site Implantation for Ni(OH)2 Nanowire Network Achieves Superior Hybrid Seawater Electrolysis at 1 A cm−2 with Record‐Low Cell Voltage

Author:

Li Ziyun1,He Xiaoyue1,Qian Qizhu1,Zhu Yin1,Feng Yafei1,Wan Wentao2,Zhang Genqiang1ORCID

Affiliation:

1. Hefei National Research Center for Physical Sciences at the Microscale CAS Key Laboratory of Materials for Energy Conversion Department of Materials Science and Engineering University of Science and Technology of China Hefei Anhui 230026 China

2. Guizhou Provincial Key Laboratory of Computational Nano‐Material Science Guizhou Education University Guiyang 550018 China

Abstract

AbstractDirect seawater electrolysis provides a grand blueprint for green hydrogen (H2) technology, while the high energy consumption has severely hindered its industrialization. Herein, a promising active site implantation strategy is reported for Ni(OH)2 nanowire network electrode on nickel foam substrate by Ru doping (denoted as RuNi(OH)2 NW2/NF), which can act as a dual‐function catalyst for hydrazine oxidation and hydrogen evolution, achieving an ultralow working potential of 114.6 mV to reach 1000 mA cm−2 and a small overpotential of 30 mV at 10 mA cm−2, respectively. Importantly, using the two‐electrode hydrazine oxidation assisted seawater electrolysis, it can drive a large current density of 500 mA cm−2 at 0.736 V with over 200 h stability. To demonstrate the practicability, a home‐made flow electrolyzer is constructed, which can realize the industry‐level rate of 1 A cm−2 with a record‐low voltage of 1.051 V. Theoretical calculations reveal that the Ru doping activates Ni(OH)2 by upgrading d‐band centers, which raises anti‐bonding energy states and thus strengthens the interaction between adsorbates and catalysts. This study not only provides a novel rationale for catalyst design, but also proposes a feasible strategy for direct alkaline seawater splitting toward sustainable, yet energy‐saving H2 production.

Funder

National Natural Science Foundation of China

Recruitment Program of Global Experts

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3