Relaxation‐Induced Significant Room‐Temperature Dielectric Pulsing Effects

Author:

Li Zhenzhen1ORCID,Gong Yutie1ORCID,Xu Aihua2,Zhao Jiayu1,Li Qiong1,Dong Lijie3ORCID,Xiong Chuanxi3ORCID,Jiang Ming1ORCID

Affiliation:

1. State Key Laboratory for New Textile Materials & Advanced Processing Technology School of Materials Science and Engineering Wuhan Textile University Wuhan 430200 China

2. Acoustic Vibration Division Hubei Institute of Measurement and Testing Technology Wuhan 430223 China

3. School of Materials Science and Engineering Wuhan University of Technology Wuhan 430070 China

Abstract

AbstractThermo‐responsive dielectric materials are in urgent demand owing to the rapid development of smart electronic/electrical systems. Although different types and structures of thermally responsive dielectric materials have been continuously reported, their dielectric response behaviors all originate from thermodynamic phase transitions. Herein, it is demonstrated that structural relaxation in poly(vinylidene fluoride) (PVDF), a non‐thermodynamic phase transition, can induce a significant thermal dielectric pulse at room temperature. The dielectric pulse strength of up to 6.3 × 105 at 20 Hz, with a dielectric pulsing temperature of 24 °C, is achieved from polyethylene glycol (PEG)‐PVDF coaxial nanofibrous films (PVDF@PEG), fabricated via a continuous blow spinning method. Moreover, the films exhibit excellent flexibility, adjustable strength and toughness, switchable hydrophilicity/hydrophobicity, and effective thermal management capability. The relaxation‐induced dielectric pulsing effect, outstanding multifunctionality, and simple preparation combine to promote further scalability and prospects of PVDF@PEG. In particular, the work contributes to the discovery of the relaxation‐induced dielectric response mechanism, which provides a new strategy for the generation of thermo‐responsive dielectric materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3