Enhancing Stability of Efficient Perovskite Solar Cells (PCE ≈ 24.5%) by Suppressing PbI2 Inclusion Formation

Author:

Shin Sooeun12,Nandi Pronoy12,Seo Seongrok3,Jung Hyun Suk24,Park Nam‐Gyu25,Shin Hyunjung12ORCID

Affiliation:

1. Department of Energy Science Sungkyunkwan University Suwon 16419 Republic of Korea

2. SKKU Institute of Energy Science and Technology (SIEST) Sungkyunkwan University Suwon 16419 Republic of Korea

3. Department of Physics University of Oxford Clarendon Laboratory Oxford OX1 3PU UK

4. School of Advanced Materials Science and Engineering Suwon 16419 Republic of Korea

5. School of Chemical Engineering Sungkyunkwan University Suwon 16419 Republic of Korea

Abstract

AbstractExcess lead(II) iodide (PbI2) has controversial roles in affecting the efficiency of perovskite solar cells (PSCs). Since the photoinstability of PbI2 is now known to largely accelerate perovskite degradation, suppressing and/or eliminating excess PbI2 is key to improving the stability of PSCs. Herein, process‐dependent PbI2 formation on the surfaces of formamidinium lead triiodide (FAPbI3) films is examined. Due to the faster evaporation rate of organic substances, crystalline PbI2 as an inclusion is found within the triple junction grain boundaries. With this hypothesis, two strategies are suggested: control of the 1) vapor pressure and 2) stoichiometry of precursor solutions to induce sufficient reaction of FAPbI3. Although both strategies successfully eliminate the PbI2 as inclusions, due to the slower evaporation rate, vapor pressure control films also exhibit a larger grain size (≈1.18 µm) with a good film quality to attain the highest power conversion efficiency (PCE) of 24.5%. Furthermore, the phase stability of α‐FAPbI3 is improved due to the elimination of the degradation sites induced by the photoinstability of PbI2. The findings explore the formation process of unwanted PbI2 (≈2.8%) and provide a simple method to effectively suppress its formation. This may further boost the PCE and stability, especially for FA‐based perovskites.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3