Solar‐Driven Selective Oxidation Over Bismuth‐Based Semiconductors: From Prolific Catalysts to Diverse Reactions

Author:

Li Shutao1,Li Yuanrui1,Huang Hongwei1ORCID

Affiliation:

1. Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials School of Material Sciences and Technology China University of Geosciences Beijing 100083 P.R. China

Abstract

AbstractSynthesis of organic compounds often necessitates rigorous reaction conditions or the involvement of hazardous oxidants, resulting in substantial energy consumption and considerable environmental damage. Photocatalytic selective oxidation represents a green and environmentally friendly way to obtain high‐value chemicals, which has developed rapidly in recent years. Bismuth‐based (Bi‐based) semiconductor materials have gained intense interest in selective organic synthesis due to their diverse crystal structures and compositions, tunable band structure, and outstanding photocatalytic performance. Herein, a systematic summary of the solar‐driven selective oxidation over varieties of Bi‐based semiconductors is provided. Initially, the reactive species involved in selective oxidation, Bi‐based materials widely used in photocatalytic selective oxidation, and the methods for synthesizing these Bi‐based materials are meticulously classified. Concerning their selective oxidation reactions, a variety of modification strategies, with a focus on the separation of photogenerated carriers and the regulation of reactive species is extensively documented. Highlights are the diverse applications and mechanism discussions of Bi‐based photocatalysts in the oxidation reactions, including alcohol oxidation, C─H bond activation, amine oxidation, and sulfide oxidation, as well as the coupling reactions with photoreduction. Finally, the future development prospects and challenges of Bi‐based photocatalysts in the field of selective oxidation is proposed, hoping to provide valuable insights and guidance for the design of photocatalysts for selective oxidation.

Funder

National Key Research and Development Program of China

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3