Customizing Hydrophilic Terminations for V2CTx MXene Toward Superior Hybrid‐Ion Storage in Aqueous Zinc Batteries

Author:

Chen Chen1,Wang Tianhao1,Zhao Xudong2,Wu Aiduo1,Li Shengwei1,Zhang Ning3ORCID,Qu Xuanhui1ORCID,Jiao Lifang4ORCID,Liu Yongchang14ORCID

Affiliation:

1. Beijing Advanced Innovation Center for Materials Genome Engineering Institute for Advanced Materials and Technology State Key Laboratory for Advanced Metals and Materials University of Science and Technology Beijing Beijing 100083 China

2. Tianjin Key Laboratory for Photoelectric Materials and Devices School of Materials Science and Engineering Tianjin University of Technology Tianjin 300384 China

3. College of Chemistry and Materials Science Hebei University Baoding 071002 China

4. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 China

Abstract

AbstractV2CTx MXene is a “rising star” cathode material for aqueous zinc‐based batteries (AZBs) owing to its large/flexible interlayer spacing, rich redox chemistry of V, and high electronic conductivity. Nevertheless, the plentiful F surface terminations generated during the common preparation (fluorine‐containing acid etching process) of V2CTx generally result in high hydrophobicity, poor Zn affinity, and sluggish ion‐diffusion kinetics. Herein, a novel OH‐termination‐rich V2CTx material with interlayer “K+‐pillars” (alk‐V2CTx) is fabricated via a facile one‐step alkalization method, which features excellent hydrophilicity, expanded ion‐transport channels, and robust layered structure. Impressively, the tailored alk‐V2CTx cathode enables highly reversible and rapid Li+/Zn2+ co‐insertion/extraction electrochemistry in the formulated 15 m LiTSFI + 1 m Zn(CF3SO3)2 aqueous electrolyte, meanwhile, the “self‐exfoliation” phenomenon of MXenes upon cycling significantly increases the active sites, rendering the superior rate performance (498.2/195.1 mAh g−1 at 0.1/30 A g−1, respectively) and exceptional cycling life (96.2% capacity retention over 20 000 cycles). Systematic in situ/ex situ analyses and theoretical computations elucidate the above hybrid‐ion storage mechanisms. Finally, flexible quasi‐solid‐state rechargeable Zn batteries employing the alk‐V2CTx cathode exhibit inspiring energy output even under severe deformation conditions and low temperatures. This study provides new perspectives for designing high‐performance MXene‐based cathodes for AZBs by modulating surface terminations.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

State Key Laboratory for Advanced Metals and Materials

China Academy of Space Technology

Higher Education Discipline Innovation Project

National Program for Support of Top-notch Young Professionals

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3