Affiliation:
1. Physical Intelligence Department Max Planck Institute for Intelligent Systems Heisenbergstr. 3 70569 Stuttgart Germany
2. Institute for Biomedical Engineering ETH Zürich 8092 Zürich Switzerland
3. School of Medicine and College of Engineering Koç University Istanbul 34450 Turkey
Abstract
AbstractRecent advances in composite hydrogels achieve material enhancement or specialized stimuli‐responsive functionalities by pairing with a functional filler. Liquid metals (LM) offer a unique combination of chemical, electrical, and mechanical properties that show great potential in hydrogel composites. Polymerization of hydrogels with LM microdroplets as initiators is a particularly interesting phenomenon that remains in its early stage of development. In this work, an LM‐hydrogel composite is introduced, in which LM microdroplets dispersed inside the hydrogel matrix have dual functions as a polymerization initiator for a polyacrylic acid‐poly vinyl alcohol (PAA/PVA) network and, once polymerized, as passive inclusion to influence its material and stimuli‐responsive characteristics. It is demonstrated that LM microdroplets enable ultra‐fast polymerization in ≈1 min, compared to several hours by conventional polymerization techniques. The results show several mechanical enhancements to the PAA/PVA hydrogels with LM‐initiated polymerization. It is found that LM ratios strongly influence stimuli‐responsive behaviors in the hydrogels, including swelling and ionic bending, where higher LM ratios are found to enhance ionic actuation performance. The dual roles of LM in this composite are analyzed using the experimental characterization results. These LM‐hydrogel composites, which are biocompatible, open up new opportunities in future soft robotics and biomedical applications.
Funder
Max-Planck-Gesellschaft
European Research Council
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献