Ferromagnetic L12‐Pt3Co Nanowires with Spin‐Polarized Orbitals for Fast and Selective Oxygen Reduction Electrocatalysis

Author:

Su Yikun12ORCID,Wang Zhaoyang1,Gao Ruoxi1,Wu Qifan1,Zhao Jinlai1,Zhu Guangming1,Li Qiliang12,Xu Hongbin1,Pan Yiye1,Gu Kunming1,Biz Chiara3ORCID,Fianchini Mauro3ORCID,Gracia Jose3ORCID

Affiliation:

1. Shenzhen Key Laboratory of Polymer Science and Technology Guangdong Research Center for Interfacial Engineering of Functional Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China

2. Department of Electrical and Computer Engineering George Mason University Fairfax VA 22030 USA

3. Magnetocat SL Calle General Polavieja 9, 3 Izq 03012 Alicante Spain

Abstract

AbstractMagnetic alloys are key to develop efficient catalysts for oxygen reduction reaction (ORR) in fuel cells. During the last decade, it has been shown that spin manipulation of magnetic materials can improve the kinetics of triplet state 3O2 electrocatalysis, promoting the unification between the physics of strongly correlated materials and heterogeneous catalysis. In this study, structurally ordered Pt3Co nanowires (NWs) are synthesized, and their ORR catalytic performances are studied in detail. These intermetallic ordered L12‐Pt3Co NWs exhibit stronger ferromagnetism, superior ORR catalytic activity, and higher tolerance to carbon monoxide than related disordered A1‐Pt3Co NWs, and commercial Pt/C catalyst. These characteristics make them one of (if not) the best catalyst reported nowadays. Density functional theory calculations prove that the L12‐Pt3Co(111) surface displays a lower activation barrier at the ORR rate‐limiting step and better selectivity H2O2/H2O (i.e., lower production of H2O2) compared with disordered A1‐Pt3Co(111). ORR reactivity increases with the level of Co order in the slab. Moreover, L12‐Pt3Co(111) displays more favorable thermodynamics, decreasing the adsorption enthalpies of 3O2, and lower ORR rate‐limiting step, due to ferromagnetic quantum spin exchange interactions (QSEI), compared with Pt(111).

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3