Physicochemically Interlocked Selenium for High Performing Aqueous Zinc–Selenium Batteries

Author:

Anjan Apurva1,Mahato Manmatha2,Bhimani Kevin1,Kushwaha Anoop K.3,Mahajani Varad3,Yoo Hyunjoon2,Panchal Reena A.1,Manoj Rohit M.1,Ha Jawon2,Nayak Saroj K.4,Keblinkski Pawel3,Oh Il‐Kwon2,Koratkar Nikhil13ORCID

Affiliation:

1. Department of Mechanical Aerospace and Nuclear Engineering Rensselaer Polytechnic Institute Troy New York 12180 USA

2. National Creative Research Initiative for Functionally Antagonistic Nano‐Engineering Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) 291 Daehak‐ro, Yuseong‐gu Daejeon 34141 Republic of Korea

3. Department of Materials Science and Engineering Rensselaer Polytechnic Institute Troy New York 12180 USA

4. School of Basic Science Indian Institute of Technology Bhubaneswar Odisha 752050 India

Abstract

AbstractA conversion‐chemistry‐based zinc–selenium aqueous battery is reported that delivers high specific capacity, good rate capability, and excellent cycle life. In this work, an electronically conjugated covalent triazine framework is used to physicochemically lock selenium (Se8) clusters. As a control sample, the traditional melt‐diffusion approach is used to physically lock Se8. While the melt‐diffused selenium cathode exhibited a precipitous drop in capacity with cycling, the physicochemically locked selenium cathode can be cycled in a stable manner and delivered a specific capacity of ≈600 mAh g−1 with a capacity retention of ≈70% after 1000 continuous charge/discharge steps. Ab initio density functional theory calculations and various structural and morphological characterizations indicate that the superiority of the physicochemically locked selenium cathode stems from its ability to suppress the polyselenide shuttle phenomenon and thus prevent loss of active material during cycling. This work opens the door toward the development of conversion chemistries for high performing, non‐flammable, and low‐cost zinc‐based rechargeable batteries.

Funder

Korea Society

Division of Chemical, Bioengineering, Environmental, and Transport Systems

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3