Smart Lubricant Coating with Urease‐Responsive Antibacterial Functions for Ureteral Stents to Inhibit Infectious Encrustation

Author:

Li Kaijun1,Tang Haibin2,Peng Jinyu1,Gao Shuai3,Du Zongliang1,Chen Gang2,Wu Dimeng3,Liu Gongyan1ORCID

Affiliation:

1. College of Biomass Science and Engineering Sichuan University Chengdu 610065 P. R. China

2. Department of Urology The First Affiliated Hospital of Chongqing Medical University 1 Youyi Road Chongqing 400016 P. R. China

3. Chengdu Daxan Innovative Medical Tech. Co., Ltd. Chengdu 611135 P. R. China

Abstract

AbstractHydrophilic lubricant coatings with antifouling properties are commercially applied to urological devices, such as ureteral stents (USs), to inhibit biofilm formation and reduce the likelihood of infectious encrustation. However, their long‐term effectiveness is limited due to the lack of active and precise antibacterial activity. Herein, this work reports a hydrophilic lubricant (defined as SA‐PU/PVP) coating with smart urease‐responsive antibiotic release functionality, achieved by incorporating the antibiotic sulfanilamide‐conjugated polyurethane (SA‐PU) polymers into a commercial lubricant coating agent containing hydrophilic polyvinylpyrrolidone (PVP). During the initial implantation period, the hydrophilic PVP chains rapidly absorb urine on the coating interface, forming a lubricating layer with the desired antifouling activities that reduce the attachment of host proteins, bacteria, and urate crystals by over 90%. As time progresses and the bacteria proliferates and produces urease, the urease enzymatically degrades the urea linkages in the SA‐PU/PVP coating, actively releasing SA antibiotics on demand to prevent biofilm formation and encrustation. Benefiting from this synergistic antifouling and smart antibacterial activities, the SA‐PU/PVP‐coated US exhibits superior performance in preventing infectious encrustation in a porcine model over a 7‐week period, surpassing the effectiveness of a commercial hydrophilic lubricant US. This coating strategy offers a practical solution for inhibiting urological device‐associated complications.

Funder

Chengdu Science and Technology Bureau

Key Technologies Research and Development Program

National Key Research and Development Program of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3