Fast‐Photocurable, Mechanically Robust, and Malleable Cellulosic Bio‐Thermosets Based on Hindered Urea Bond for Multifunctional Electronics

Author:

Shen Yi1,Jia Qianqian1,Xu Shijian1,Yu Juan1,Huang Caoxing1,Wang Chunpeng2,Lu Chuanwei1ORCID,Yong Qiang1,Wang Jifu2,Chu Fuxiang2

Affiliation:

1. Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials College of Chemical Engineering Nanjing Forestry University Nanjing 210037 China

2. Institute of Chemical Industry of Forest Products Chinese Academy of Forestry (CAF) No 16, Suojin Wucun Nanjing Jiangsu 210042 China

Abstract

AbstractMalleable thermosets as dynamic covalent cross‐linked polymers, simultaneously possessing the advantages of thermosets and thermoplastics, have attracted considerable attention. Although several reprocessing concepts have been demonstrated, the fabrication of fast‐curing bio‐based strong and tough malleable thermosets for advanced applications in electronics remains a great challenge. Herein, a novel construction strategy of combining hindered urea bonds (HUB) and radical polymerization is developed to prepare fast‐photocurable and mechanically robust cellulose‐based malleable bio‐thermosets (CMTs). In this strategy, the functional cellulose macromonomer simultaneously has acrylate groups and HUB is first synthesized and employed as a macro‐crosslinker to react with plant oil‐based monomer to construct the malleable bio‐thermosets with “soft (plant oil‐based polymer)” and “hard (rigid cellulose)” phase architecture through the fast photocuring. The CMTs exhibit excellent flexibility and high toughness (2.89 MJ m−3), and the introduction of dynamic HUB endows the CMTs with excellent malleability and reprocessability by heating compression molding or solvent regeneration, the recovery efficiency reached 94.7%. More impressively, the CMTs can be used as substrates to fabricate CMTs/silver composite for anti‐icing or de‐icing devices, and CMTs‐based capacitive sensors for monitoring environmental humidity or human health. This work paves a new strategy to develop new‐generation fast‐photocurable mechanically robust, malleable bio‐thermosets for multifunctional electronic devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3