Reallocating Cell Respiration Substrates for Cancer Therapy Using a Metabolism Regulator with an Intermembrane‐Translocatable Accessory

Author:

Duan Qiu‐Yi1ORCID,Zhu Ya‐Xuan2,Shan Bai‐Hui1,Guo Yuxin1,Xu Ke‐Fei1,Jia Hao‐Ran3,Wu Fu‐Gen1ORCID

Affiliation:

1. State Key Laboratory of Bioelectronics School of Biological Science and Medical Engineering Southeast University 2 Sipailou Road Nanjing Jiangsu 210096 P. R. China

2. Shanghai Tenth People's Hospital Shanghai Frontiers Science Center of Nanocatalytic Medicine School of Medicine Tongji University Shanghai 200331 P. R. China

3. The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital) Hangzhou Institute of Medicine (HIM) Chinese Academy of Sciences Hangzhou Zhejiang 310022 P. R. China

Abstract

AbstractOne hallmark of cancer cells is aberrant glucose metabolism. By desperately consuming glucose, cancer cells grow quickly and form a hypoxic core in the tumor, which severely limits the efficacy of oxygen‐dependent therapeutic strategies. Herein, a cell metabolism regulation strategy is adopted to reallocate cell respiration substrates for fueling the processes for cancer therapy by constructing a metabolism nanoregulator (denoted as ATO/GOx PLP). To be specific, a protoporphyrin IX (PpIX, the intermembrane‐translocatable accessory)‐doped liposome is employed for direct intracellular delivery of GOx and atovaquone (ATO, a mitochondrial complex III inhibitor). The PpIX‐doped liposome can efficiently avoid the cargo leakage in blood circulation. Benefiting from the translocation of PpIX from the liposome to the cancer cell membrane, ATO and GOx can be rapidly released upon encountering the plasma membrane and internalized by the cancer cell. By inhibiting mitochondrial oxidative phosphorylation and regulating mitochondrial function, ATO reduces both oxygen consumption and glucose metabolism, sparing more substrates for GOx to kill cancer cells. As a result, ATO/GOx PLP presents outstanding anticancer efficacies both in vitro and in vivo. In addition, the ATO/GOx PLP exhibits excellent biosafety, showing its clinical translation potential. Overall, this study provides a new approach to achieve efficacious metabolism regulation‐based cancer therapy.

Funder

Natural Science Foundation of Jiangsu Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3