Optimizing the Dehydrogenation Kinetics of Metal Nitrides for Energy‐Efficient Seawater Hydrogen Production at 2 A cm−2

Author:

Hu Huashuai1,Xu Zhihang2,Zhang Zhaorui1,Yan Xiaohui1,Wang Xiaoli1,Zhu Ye2,Wang Jiacheng3,Yang Minghui1ORCID

Affiliation:

1. School of Environmental Science and Technology Dalian University of Technology Dalian 116024 China

2. Department of Applied Physics Research Institute for Smart Energy The Hong Kong Polytechnic University Hung Hom Hong Kong 999077 China

3. Zhejiang Key Laboratory for Island Green Energy and New Materials Institute of Electrochemistry School of Materials Science and Engineering Taizhou University Taizhou Zhejiang 318000 China

Abstract

AbstractSeawater hydrogen production, vital for sustainable energy solutions and freshwater preservation, faces challenges due to seawater complexity and high energy consumption. A strategy to modulate dehydrogenation kinetics of dual‐phase metal nitrides using low‐loaded Pt quantum dots (QDs), achieving stable and energy‐efficient hydrogen generation is introduced. The Pt QDs@Ni3N‐MoN/Ti catalyst displays outstanding bifunctional seawater catalytic performance, enabling efficient hydrogen production and hydrazine degradation in a flow anion exchange membrane water electrolysis (AEMWE) device. Operating at a low voltage of 1.41 V, it achieves 2 A cm−2 for 300 h, circumventing chlorine corrosion and yielding record‐breaking energy equivalent input (2.68 kWh m−3 H2 at 1 A cm−2), a 47.1% reduction compared to traditional methods. Integration with solar and biomass energy facilitates self‐powered hybrid seawater hydrogen production, highlighting its potential applications. This work facilitates energy‐efficient marine resource conversion to green hydrogen and offers viable insights into industrial hazardous pollutant degradation using metal‐nitride electrocatalysts.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Science and Technology Commission of Shanghai Municipality

Hong Kong Polytechnic University

Publisher

Wiley

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3