Anti‐Polyelectrolyte Effect of Zwitterionic Hydrogel Electrolytes Enabling High‐Voltage Zinc‐Ion Hybrid Capacitors

Author:

Zeng Juan1,Chen Hao1,Dong Liubing2,Guo Xin3ORCID

Affiliation:

1. College of Chemistry and Environmental Engineering Wuhan Polytechnic University Wuhan 430023 China

2. College of Chemistry and Materials Science Jinan University Guangzhou 511443 China

3. State Key Laboratory of Material Processing and Die & Mould Technology Laboratory of Solid State Ionics School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China

Abstract

AbstractTo date, the exploration of zwitterionic application is confined to the function of electrolyte's additives to improve the properties of the electrolytes. However, reports on the unique properties of zwitterions, namely the anti‐polyelectrolyte effect (APE), as the regulators of the electrochemical stability windows (ESWs) of the zwitterionic electrolytes are scarce. Herein, a zwitterionic electrolyte system is designed and study the relationship between the APE and the ESWs of the zwitterionic electrolytes. The hydrogen/oxygen evolution in the zwitterionic electrolytes is significantly inhibited under the action of the APE. On this basis, the ESWs of zwitterionic electrolytes can be expanded, ultimately achieving an effective improvement in the energy density of zinc‐ion hybrid capacitors (ZHCs). The sulfonic‐based zwitterionic hydrogel electrolytes prepared based on this strategy achieve a wide ESW of 2.58 V and high ionic conductivity of 29.3 mS cm−1. Meanwhile, the corresponding ZHCs possess a high working voltage of 2.1 V (1.6 V for the traditional ZHCs), a high capacity of 188.9 mAh g−1 and a high energy density of 110 Wh kg−1. The way utilizing the APE of zwitterions to expand the ESWs opens up a new avenue to improve the energy density of energy storage devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3