Three-phase behavior-based detection and classification of known and unknown malware

Author:

Lin Ying-Dar1,Lai Yuan-Cheng2,Lu Chun-Nan1,Hsu Peng-Kai1,Lee Chia-Yin3

Affiliation:

1. Department of Computer Science; National Chiao Tung University; Hsinchu 300 Taiwan

2. Department of Information Management; National Taiwan University of Science and Technology; Taipei 106 Taiwan

3. Information & Communication Technology Laboratories; National Chiao Tung University; Hsinchu 300 Taiwan

Publisher

Wiley

Subject

Computer Networks and Communications,Information Systems

Reference12 articles.

1. Forrest S Hofmeyr SA A Somayaji Longstaff TA A Sense of Self for Unix Process 1996 120 128

2. Anomalous system call detection;Mutz;ACM Transactions on Information and System Security,2006

3. Warrender C Forrest S Pearlmutter B Detecting Intrusions Using System Calls: Alternative Data Models Proceedings of the 1999 IEEE Symposium on Security and Privacy 1999 133 145

4. Mehdi SB Tanwani AK Farroq M IMAD: In-Execution Malware Analysis and Detection Proceedings of the 11 th Annual conference on Genetic and Evolutionary Computation 2009 1553 1560

5. Rozenberg B Gudes E Elovici Y Fledel Y A Method for Detecting Unknown Malicious Executables Proceedings of the 2011 IEEE 10 th International Conference on Trust Security and Privacy in Computing and Communications 2011 190 196

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A novel deep framework for dynamic malware detection based on API sequence intrinsic features;Computers & Security;2022-05

2. Similarity hash based scoring of portable executable files for efficient malware detection in IoT;Future Generation Computer Systems;2020-09

3. Identification of Android malware using refined system calls;Concurrency and Computation: Practice and Experience;2019-05-09

4. A machine learning based approach to detect malicious android apps using discriminant system calls;Future Generation Computer Systems;2019-05

5. Systematic Characterization of a Sequence Group;Proceedings of the 5th International Conference on Information Systems Security and Privacy;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3