A novel collaborative control algorithm for maximum power point tracking of wind energy hydraulic conversion system

Author:

Chen Lijuan1ORCID,Li Jingbin1,Zhang Lin2,Gao Wei2,Ai Chao2,Ding Beichen3

Affiliation:

1. College of Mechanical and Electrical Engineering Shihezi University Shihezi China

2. School of Mechnical Engineering Yanshan University Qinhuangdao China

3. School of Intelligent Systems Engineering Sun Yat‐sen University Guangzhou China

Abstract

AbstractWind has been admitted as one of the most promising renewable energy resources in multinational regionalization policies. However, the energy conversion and utilization are challenging due to the technique reliability and cost issues. Hydraulic wind turbine (HWT) may solve the above problems. HWT is taken as a research object, and the maximum power point tracking (MPPT) control strategy is proposed collaborating with active disturbance rejection control (ADRC) and linear quadratic regulator (LQR) control methods, to solve multiplicative nonlinearity problems in the plant models and the influence of external disturbance on control performance in the MPPT control process. A nonlinear simulation model is built to explain the main findings from the experiments and obtain a better understanding of the effect of time‐varying system parameters and random fluctuation in wind speed. The collaborative control algorithm is experimentally verified on a 24‐kW HWT semi‐physical test platform that results in a promising energy conversion rate, plus the hydraulic parameters can satisfy the demand, accordingly. Ultimately, the potential challenges of implementing this technique in a smart wind energy conversion system are discussed to give a further design guidance, either theoretically or practically.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3