Improved subspace modal identification of industrial robots

Author:

Qiao Yuting1,Cao Junyi1,Huang Guohui1,Liu Huan1,Lei Yaguo1,Liu Qinghua1

Affiliation:

1. Key Laboratory of Education Ministry for Modern Design and Rotor‐Bearing System, School of Mechanical Engineering Xi'an Jiaotong University Xi'an China

Abstract

AbstractIndustrial robots have become key components for manufacturing automations due to their larger workspaces and flexibility. However, low stiffness and high compliance of industrial robots may inevitably lead to vibration by self‐excitation or periodic force dependent on workspace configuration. Therefore, the knowledge of the robot's modal properties should be accurately required to enhance the operation accuracy of industrial robots. To improve the identification accuracy of experimental modal parameters of field industrial robots, an improved subspace identification method is proposed to perform nonlinear iterative optimization for updating the state parameters of industrial robots. Experimental response measurement of a six‐degrees‐of‐freedom industrial robot is carried out to obtain modal parameters under various poses. The identification results of the improved subspace modal method are preferable to that of the traditional method. Moreover, the reconstructed three‐dimension working frequency space is presented to exactly characterize experimental modal frequencies throughout its workspace. The proposed method effectively improves the identification accuracy of modal parameters when compared with the traditional algorithms and the influence of robots' pose change on modal parameters is also investigated by experimental modal measurements.

Publisher

Wiley

Subject

Computer Science Applications,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3