Observer‐based residual‐driven dynamic compensation strategy for performance improvement of grid‐forming inverter

Author:

Zhang Shufeng1ORCID,Liu Changan2,Shi Yuntao3,Yin Xiang3,Zhang Ying3

Affiliation:

1. School of Control and Computer Engineering North China Electric Power University Beijing China

2. School of information North China University of Technolog Beijing China

3. School of Electrical and Control Engineering North China University of Technology Beijing China

Abstract

SummaryGrid‐forming (GFM) inverters offer stable frequency support for microgrid systems, even in the absence of synchronous generators. However, the GFM inverters have low inertia and vulnerability to system uncertainties and external disturbances. The conventional dual‐loop proportional integral (PI) control strategy, while widely used for its simplicity and robustness, suffers from poor dynamic performance. Motivated by this, this paper presents an observer‐based residual‐driven dynamic compensation (RDDC) strategy based on the coprime factorization technic and the Youla parameterization theory to achieve the primary control of the GFM inverter. The observer‐based RDDC strategy comprises four components: a PI controller for tracking control, a linear quadratic regulator (LQR) controller for dynamic adjustment, a residual generator based on the Kalman filter for state estimation and residual generation, and a residual compensation controller designed using model matching theory and solved through linear matrix inequality (LMI) methods for disturbance suppression. Simulation and experiment results consistently demonstrate that the observer‐based RDDC strategy ensures system robustness, enhances the dynamic and steady‐state performance of the GFM inverter system, and strengthens the ability of the GFM inverter to suppress disturbances.

Publisher

Wiley

Subject

Applied Mathematics,Electrical and Electronic Engineering,Computer Science Applications,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3