Numerical simulation of frost heave of saturated soil considering thermo‐hydro‐mechanical coupling

Author:

Fu Hao1,Song Erxiang1ORCID,Tong Rui1

Affiliation:

1. Department of Civil Engineering Tsinghua University Beijing China

Abstract

AbstractFrost heave can lead to both the ground uplifting and frost heave pressure under different circumstances, and cause many engineering problems. To describe the characteristics of frost heave under various thermo‐hydro‐mechanical (THM) coupling conditions and calculate both the frost heave amount and the frost heave pressure, the coupled THM process, as well as the phase change of the pore water, should be considered for freezing soil. In this paper, thermodynamic equilibrium conditions in saturated freezing soil were derived to account for the mechanical effect on the cryogenic suction and unfrozen saturation of pore water during phase transition. Then the governing equations were developed considering the water flow, heat transfer, stress equilibrium, phase change, ice segregation, and their complex interactions. Based on that, a numerical model considering fully THM coupling is presented within the framework of finite element provided by COMSOL. Both frost heave amount tests and frost heave pressure tests were simulated to verify the proposed model. Then the model was applied to subgrades with different types of soil and different boundary conditions, to reveal the characteristics of frost heave amount and frost heave pressure under different conditions, and at the same time to demonstrate the model's applicative prospect.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Mechanics of Materials,Geotechnical Engineering and Engineering Geology,General Materials Science,Computational Mechanics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3