Water‐limited environments affect the association between functional diversity and forest productivity

Author:

Lammerant Roel1ORCID,Rita Angelo2ORCID,Borghetti Marco3ORCID,Muscarella Robert1ORCID

Affiliation:

1. Department of Ecology & Genetics Uppsala University Uppsala Sweden

2. Dipartimento di Agraria Università degli Studi di Napoli Federico II Portici (Napoli) Italy

3. Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali Università degli Studi della Basilicata Potenza Italy

Abstract

AbstractThe link between biodiversity and ecosystem function can depend on environmental conditions. This contingency can impede our ability to predict how biodiversity‐ecosystem function (BEF) relationships will respond to future environmental change, causing a clear need to explore the processes underlying shifts in BEF relationships across large spatial scales and broad environmental gradients. We compiled a dataset on five functional traits (maximum height, wood density, specific leaf area [SLA], seed size, and xylem vulnerability to embolism [P50]), covering 78%–90% of the tree species in the National Forest Inventory from Italy, to test (i) how a water limitation gradient shapes the functional composition and diversity of forests, (ii) how functional composition and diversity of trees relate to forest annual increment via mass ratio and complementarity effects, and (iii) how the relationship between functional diversity and annual increment varies between Mediterranean and temperate climate regions. Functional composition varied with water limitation; tree communities tended to have more conservative traits in sites with higher levels of water limitation. The response of functional diversity differed among traits and climatic regions but among temperate forest plots, we found a consistent increase of functional diversity with water limitation. Tree diversity was positively associated with annual increment of Italian forests through a combination of mass ratio and niche complementarity effects, but the relative importance of these effects depended on the trait and range of climate considered. Specifically, niche complementarity effects were more strongly associated with annual increment in the Mediterranean compared to temperate forests. Synthesis: Overall, our results suggest that biodiversity mediates forest annual increment under water‐limited conditions by promoting beneficial interactions between species and complementarity in resource use. Our work highlights the importance of conserving functional diversity for future forest management to maintain forest annual increment under the expected increase in intensity and frequency of drought.

Funder

Vetenskapsrådet

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3