Directional and stabilizing selection shaped morphological, reproductive, and physiological traits of the invader Solidago canadensis

Author:

Du Leshan12,Oduor Ayub M. O.23ORCID,Zuo Wei24,Liu Haiyan12,Li Jun‐Min2ORCID

Affiliation:

1. State Key Laboratory of Environmental Criteria and Risk Assessment Chinese Research Academy of Environmental Sciences Beijing China

2. Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation Taizhou University Taizhou China

3. Department of Applied Biology Technical University of Kenya Nairobi Kenya

4. Sanofi (Hangzhou) Pharmaceuticals Co. Ltd. Hangzhou China

Abstract

AbstractTrait evolution in invasive plant species is important because it can impact demographic parameters key to invasion success. Invasive plant species often show phenotypic clines along geographic and climatic gradients. However, the relative contributions of natural selection and neutral evolutionary processes to phenotypic trait variation among populations of invasive plants remain unclear. A common method to assess whether a trait has been shaped by natural selection or neutral evolutionary processes is to compare the geographical pattern for the trait of interest to the divergence in neutral genetic loci (i.e., QST–FST comparisons). Subsequently, a redundancy analysis (RDA) can facilitate identification of putative agents of natural selection on the trait. Here, we employed both a QST–FST comparisons approach and RDA to infer whether natural selection shaped traits of invasive populations of Solidago canadensis in China and identify the potential environmental drivers of natural selection. We addressed two questions: (1) Did natural selection drive phenotypic trait variation among S. canadensis populations? (2) Did climatic, latitudinal, longitudinal, and altitudinal gradients drive patterns of genetic variation among S. canadensis populations? We found significant directional selection for several morphological and reproductive traits (i.e., QST> FST) and stabilizing selection for physiological traits (i.e., QST< FST). The RDA showed that stem biomass of S. canadensis was strongly positively correlated with longitude, while leaf width ratio and specific leaf area were significantly positively correlated with the mean diurnal range. Stem biomass had a strong negative correlation with annual precipitation. Moreover, height of S. canadensis individuals was strongly positively correlated with altitude and precipitation of the wettest quarter. A longitudinal shift in precipitation seasonality likely selected for larger stem biomass in S. canadensis. Overall, these results suggest that longitudinal and altitudinal clines in climate exerted strong selection pressures that shaped the phenotypic traits of S. canadensis.

Funder

National Basic Research Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3