The successes and pitfalls: Deep‐learning effectiveness in a Chernobyl field camera trap application

Author:

Maile Rachel E.1ORCID,Duggan Matthew T.123,Mousseau Timothy A.1ORCID

Affiliation:

1. Department of Biological Sciences University of South Carolina Columbia South Carolina USA

2. K. Lisa Yang Center for Conservation Bioacoustics, Cornell Lab of Ornithology Cornell University Ithaca New York USA

3. Department of Natural Resources and the Environment Cornell University Ithaca New York USA

Abstract

AbstractCamera traps have become in situ sensors for collecting information on animal abundance and occupancy estimates. When deployed over a large landscape, camera traps have become ideal for measuring the health of ecosystems, particularly in unstable habitats where it can be dangerous or even impossible to observe using conventional methods. However, manual processing of imagery is extremely time and labor intensive. Because of the associated expense, many studies have started to employ machine‐learning tools, such as convolutional neural networks (CNNs). One drawback for the majority of networks is that a large number of images (millions) are necessary to devise an effective identification or classification model. This study examines specific factors pertinent to camera trap placement in the field that may influence the accuracy metrics of a deep‐learning model that has been trained with a small set of images. False negatives and false positives may occur due to a variety of environmental factors that make it difficult for even a human observer to classify, including local weather patterns and daylight. We transfer‐trained a CNN to detect 16 different object classes (14 animal species, humans, and fires) across 9576 images taken from camera traps placed in the Chernobyl Exclusion Zone. After analyzing wind speed, cloud cover, temperature, image contrast, and precipitation, there was not a significant correlation between CNN success and ambient conditions. However, a possible positive relationship between temperature and CNN success was noted. Furthermore, we found that the model was more successful when images were taken during the day as well as when precipitation was not present. This study suggests that while qualitative site‐specific factors may confuse quantitative classification algorithms such as CNNs, training with a dynamic training set can account for ambient conditions so that they do not have a significant impact on CNN success.

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

Reference42 articles.

1. TensorFlow: Large‐scale machine learning on heterogeneous systems;Abadi M.;Arxiv,2015

2. Efficient pipeline for camera trap image review;Beery S.;Arxiv,2019

3. Report Quality of Generalized Linear Mixed Models in Psychology: A Systematic Review

4. An approach to rapid processing of camera trap images with minimal human input

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3