Intraspecific trait variation and adaptability of Stipa krylovii: Insight from a common garden experiment with two soil moisture treatments

Author:

Liu Yulin1,Fan Baijie1,Gong Ziqing1,He Luoyang1,Chen Lei1,Ren Anzhi1,Zhao Nianxi1ORCID,Gao Yubao1

Affiliation:

1. Department of Plant Biology and Ecology, College of Life Science Nankai University Tianjin China

Abstract

AbstractUnderstanding patterns of intraspecific trait variation can help us understand plant adaptability to environmental changes. To explore the underlying adaptation mechanisms of zonal plant species, we selected seven populations of Stipa krylovii, a dominant species in the Inner Mongolia Steppe of China, and evaluated the effects of phenotypic plasticity and genetic differentiation, the effects of climate variables on population trait differentiation, and traits coordinated patterns under each soil moisture treatment. We selected seeds from seven populations of S. krylovii in the Inner Mongolia Steppe, China, and carried out a soil moisture (2) × population origin (7) common garden experiment at Tianjin City, China, and measured ten plant traits of S. krylovii. General linear analyses were used to analyze how soil moisture and population origin affected each trait variation, Mantel tests were used to analyze population trait differentiation—geographic distance (or climatic difference) relationships, regression analyses were used to evaluate trait‐climatic variable relationships, and plant trait networks (PTNs) were used to evaluate traits coordinated patterns. Both soil moisture and population origin showed significant effects on most of traits. Aboveground biomass, root‐shoot ratio, leaf width, specific leaf area, and leaf nitrogen (N) content were significantly correlated with climate variables under the control condition. Specific leaf area and leaf N content were significantly correlated with climate variables under the drought condition. By PTNs, the hub trait(s) was plant height under the control condition and were aboveground biomass, root length, and specific leaf area under the drought condition. This study indicates that both phenotypic plasticity and genetic differentiation can significantly affect the adaptability of S. krylovii. In addition, soil moisture treatments show significant effects on trait‐climate relationships and traits coordinated patterns. These findings provide new insights into the adaptive mechanisms of zonal species in the semiarid grassland region.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Nature and Landscape Conservation,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3